- Obtenir la figure de diffraction-interférence avec les trous d’Young comme étant un système à division de front d’onde,
- Vérification de la formule théorique de l’intensité dans le cas de l’approximation de Fraunhoffer,
- Mesure du rapport de la distance inter-trous sur le rayon d’un trou
Montage expérimental à deux lentilles
Montage expérimental à une seule lentille
Montage expérimental sans lentille
- Laser,
- jeton en verre chromé contenant des trous d’Young,
- caméra permettant de capturer des images.
1. Définition : Deux trous de rayon R séparés d’une distance a aménagées dans un écran opaque à la lumière comme le montre la figure ci-dessous. La lumière incidente est diffractée par chaque trou. Dans la zone d’intersection, il y a interférence des ondes diffractées par les deux trous. On appelle cette zone le champ d’interférence. L’expression de l’intensité en un point M d’un écran distant de D fait intervenir la diffraction par un trou et l’interférence entre les deux ondes. Cette expression est complexe.
2. Expression de l’intensité lumineuse sur l’écran dans le cadre de l’approximation de Fraunhoffer Considérons le cas d’un trou circulaire de rayon $\varepsilon$ comme le montre la figure ci-dessous. En vertu du principe d’Huygens-Fresnel, l’amplitude en un point M s’exprime sous la forme : $$\underline a(M)=\iint_\Sigma Q\underline a_i(P)\frac{\exp(jkr)}{r}d\Sigma(P)$$ où Q est un paramètre complexe relié au facteur d’obliquité et dépend du point P et du point M. $\underline a_i(P)$ est l’amplitude complexe au point P. La distance r qui figure dans l’intégrale s’exprime sous la forme : $$r=\sqrt{(PO_1+O_1M)^2}=\sqrt{\varepsilon^2+R^2-2\overrightarrow{O_1P}\cdot\overrightarrow{O_1M}}$$
- L’approximation de Fraunhoffer consiste à prendre R suffisamment grand devant $\varepsilon$ et devant $O’M=\sqrt{X^2+Y^2}$ de telle manière que Q soit une constante. Dans ce cas la distance r devient : $$r\approx R-\overrightarrow{O_1P}\cdot \overrightarrow u_d+\frac{O_1P^2}{2R}\approx R-\overrightarrow{O_1P}\cdot \overrightarrow u_d ;\quad R\approx D_{\text{distance ecran-trou}}$$
- L’approximation de Fraunhoffer consiste à considérer $\exp\left(\frac{kO_1P^2}{2R}\right)=1$, c’est à dire $O_1P^2\ll \frac{\lambda R}{\pi}\quad \forall P$, ce qui revient à dire que $\varepsilon^2\ll \frac{\lambda R}{\pi}$. Dans ces conditions, l’amplitude au point s’exprime sous la forme :
- $$\underline a(M)=\underline C\iint_\Sigma \underline a_i(P)\exp(-j\overrightarrow k_d\cdot \overrightarrow{O_1P})d\Sigma ;\quad\overrightarrow k_d=\frac{2\pi}{\lambda}\overrightarrow u_d$$ \item Pour un trou de diamètre $70\,\mu m$, l’approximation est valable à 1
Expérience en vidéo
Interférences à l’aide des trous d’Young
Expérience en vidéo
Interférences à l’aide des trous d’Young